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A case study is presented in which the logistic map is shown to have anomalous,
precision-dependent behavior. It is also demonstrated that using greater precision
does not necessarily lead to greater accuracy and, in fact, the contrary can be true.
Though the presention deals only with this particular map itillustrates that the actual
math package being used should be examined and cannot be treated as a black
boX. (© 2001 Academic Press
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1. INTRODUCTION

This study deals with the possibility of computer-induced artifacts in chaos studies.
analysis is structured around the quadratic iterator also known as the logistic map,

Xne1 = AX (1= Xn), 1)

whereA <4.0andn=0,1,...00.

Nothing about the method of analysis is limited to this example but we know of no otf
examples in which similar results occur. Nonetheless the possibility of unwanted intrusi
of computer arithmetic into numerical studies of any type does exist. Increasing precis
does not necessarily increase accuracy, as is illustrated here.

The effect of computer round-off on the study of nonlinear systems is well document
[1, 2]. In general, the computer solution diverges exponentially from the “true” result. Hol
ever, the shadowing theorem [3] states that the computer solution is near to, or shad
a true solution; hence the computer solution itself is still useful [4]. Figure 1 (top) sho
the divergence resulting from round-off of the iterates of the logistic equation. The “€
act” solution is based on 28 digits of precision compared to 8 digits of precision for t
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FIG. 1. Top: The true solution of the iterates of the logistic equation are shown in black and then grey. T
extended black solutions show the effect of computer round-off. The initial seed in both cage8isttom: The
“true” iterates of an initial seed of, = 0.217 andA = 3.8, shown in gray, come in to shadow the rounded iterates
of A = 3.8 and initial seed of @ after around 50 iterations.

comparison solution. Both are based Ar= 3.8 and an initial starting point ofy = 0.2.
Figure 1 (bottom) shows how the iterates of another valug cbme in to shadow the pre-
cision 8 computer iterates @& = 3.8. Round-off, or finite precision, does not cause chaotit
behavior [5] but can be used to predict the Lyapunov exponent. The Lyapunov expon
for the one-dimensional quadratic iteraté (1 — x), is given as(A) = —A(A)/In(10),
wheres(A) is the digit loss/gain per iteration as a function of the paraméteand is
the Lyapunov exponent. The growth in the erroE is proportional toe*, so a positive.
produces an exponential decrease in precision and vice versa. If the paraneterthe
chaotic regimej will be positive and result in an increase in the error between iteration
moving continuously away from the current true trajectory. In this paper we present
important class of numbers for which this is not the case.

Most initial conditions xp, correspond to the same Lyapunov expongniyhich, along
with shadowing, prevents finite digit arithmetic from masking the effects of chaos. Tt
allows the loss of precision due to finite digit arithmetic to be viewed asxapost-facto
shift in xo, which does not alter the overall behavior of the iteration. For example, if tF
parameteAis such that the iteration should produce a stable double population, the iterat
will move toward the population with a decreasing error in proportioettavherei will
be negative . However, iA is in the chaotic regime, the iteration will move continuously
away from the current true trajectory with an error proportionaftovherex is positive.
This last statement is not true for an important class of numbers, namely, numbers wi
positive . does not cause increasing error.

The present discussion will be limited to rational humbexgy, p andq both inte-
ger. Computers are capable of representing only rational numbers exactly. While the
lowing holds strictly true for BCD (binary coded decimal) arithmetic, where the indi
vidual decimal digits are separately converted to their binary equivalents, typical bin:
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representations produce results consistent with those presented here. The derivatior
sented here assumes that if the decimal representation of the entered number is Ic
than the specified precision of the computer, the number is truncated. For exafipie, 1
0.142857142857... would be represented 4285714 in precision 8. On the other hand
it can be difficult to tell how the arithmetic is actually done. It may well be that al
though the specified precision is 8, calculations are actually performed using 10 di
and rounded to 8. For this reason, and for the convenience of the reader, a BCD emul
via JavaScript is directly accessabléatp: //www. image-ination.com/logis.html.
Since JavaScript is dependent on browser evolution and new browsers may not alv
properly respect earlier versions of JavaScript, we also have available the same en
tion written in Scheme. This has been tested on Unix, Windows, and Macintosh syste
The source is available atttp://www.image-ination.com/logistic.txt and in-
structions ahttp://www.image-ination.com/ReadlMe.txt. A runtime version for the
Macintosh is available attp://image-ination.com/Logistic.hqgx.

We might encounter an error Ky in one of two ways: eithexg is inaccurate because of
insufficient knowledge on our part or it cannot be represented without error by a compu
For example, if we know to be exactly 111 and wish to use this initial value in a computer
program we introduce an erreg — Xg, Wherexg is Xg as represented by the computer. The
error in this case is

AEg = 107N frac(10N(1/11)), (2)

whereN is the precision of the computer and frac returns the fractional part of a numb
One may attempt to avoid precision-induced error by using only rational arithmetic. Tl
preserves the “true” trajectory but almost always exceeds the capacity of the compute
short order. Here we consider only one-dimensional system errors which propagate bec
of precision-induced errors ixy.

2. RESULTS

In order for the quadratic iterator paramet&rto be exactly represented by the computel
it is taken to be of the forng/ p, wherep contains only factors of 2 or 5. The fixed point
of the iterator,

Xo=01-1/A), 3

becomes unstable #& = 3 and is replaced by a repeating double population which wit
increasingA rapidly splits into populations of 4, 8, 16, etc., until chaos is reached. Hov
ever, as expected, if rational arithmetic is usedAoe 3.5 (i.e., 7/2), where conventional
decimal iteration would be expected to produce a repeating series of four populations,
fixed point 57 calculated from Eq. (3) is metastable. This result follows from the fact that r
information is lost between iterations when rational arithmetic is used and from the fact t
fractions of the forrm/7 (n =1, ..., 6) have the property that eithay7 or 1— (n/7) is
even. This cancels the 2 in the denominator (&, €ausing the resulting iteration to always
produce a member of the/7 family; consequently, the information content does not grov
unmanageably. This result would not be expected from finite precision decimal arithm¢
but, surprisingly, using decimal arithmetic with a precision qb@97 = 0.714285714 or
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7 (5/7 = 0.7142857 still produces the same metastable population after any number
iterations. However, for a precision of(8/7 = 0.71428571, the single population is not
stable. The Lyapunov exponent for precisions 9 and 748%5b (and so they should not be,
but are, metastable), but for precision 8 it is negativ@.81) as expected, both as calculated
in [1]. Clearly, the precision of the computer plays an important role in this instance as
many others.

ConsiderA = q/p andxp = 1 — p/q. Xp will be xq as represented by the computer,

Xo=1—-p/q—eo(N.q, p), 4)
where
eo(N. g, p) = 10" frac(10M(1 — p/q)). (5)

IteratingXo will produce a growth in the error such that

X1 =0q/p(1— p/q—eo(N,q, p)(p/q+ (N, d, p) (6)
=1-p/g+e€i(N,q, p), (7)

where
€1(N,q, p) =(q/p—2e(N.q, p) (8)

and terms quadratic iy have been ignored. Values Afgreater than 3 ensure that> «.
This divergence from the stable solution will continue as the iteration moves away frc
the initial seedxg = 1 — p/q. However, the finite precision of the computer calculation
introduces an additional erras, in the value ofxy,

e2(N, g, p) = 107N frac(10Vxy). (9)

€2(N.q, p) = (@/p— Deo(N. q, p). (10)

then the propagation error will be canceled at each iteration by the corresponding trunca
error. To see this, writ&,,

X1 = Xo+ €o(N, g, p) +€1(N, g, p) (11)
=Xo+ (@/p — Deo(N, q, p). (12)

For x; to equalXg requires that
(a/p— Deo(N, g, p) =e€2(N, g, p) (13)

or

q/p — 1) frac(10V(1 — p/q))
= frac(10N (X0 + (q/p — )10~ N frac(10N (1 — p/q))). (14)
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SinceXg = 1 — p/q and fraém + x) = frac(x) for m integer, the above reduces to

(a/p — 1) frac(10" (1 — p/q)) = frac((q/p — 1) frac10™ (1 — p/q))),  (15)
from which it is concluded that fox; = Xo, (q/p — 1) frac(10N (1 — p/q)) must be less
than 1. This is a sufficient condition for the truncation error to cancel the propagation er

For example, considgr = 2, g = 7 so thatxg = 5/7. Since 10 is a primitive root mod 7,

10° = 1(mod 7, (16)

it follows [6] that the repeating fraction for/X has period 6 and that/7,m =2, ..., 6,
is just a cyclically shifted version of the decimal representatiory@f Therefore,

frac(10N5/7) = m(N)/7, (17)

wherem(N) = 1,...,6 depending on the precisiomy. For (q/p — 1) frac(10N (1 —
p/d)) < 1to be true requires

@/p—DbmN)/7 <1 (18)

or
m(N) < 14/5, (29)

which implies thatm(N) equals 1 or 2. For precisioN =9, m(9) = 2, and for pre-
cision N =7, m(7) = 1, and therefore the condition is satisfied in both cases, but f
N = 8, m(8) = 4, which does not satisfy the condition above. This explains the earli
observation about the stability of B for A = 7/2 with precisions 9 and 7 but not 8. Any
precision that produces an(N) of 1 or 2 will be metastable. The value wi{N) is found
from the periodic nature of the repeating fractigf7 &s the value for whictn(N) /7 equals

the fractional part of p7 shiftedN digits to the left.
Consider now the general case, which requires that

@/p— 1 frac10¥(1 - p/q)) <1 (20)
or
frac(10" (1 — p/q)) < p/(@— p) = 1/(A—1). (21)

Since only values of\ from 3 to 4 are of interest, a sufficient condition for the cancellatior
of errors to occur is

frac(10N (1 — p/q)) < 1/3. (22)
If g is chosen so that

10°1 = 1(modq), (23)
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then the cancellation condition above becomes
m(N)/q < 1/3, (24)

wherem(N) = 1,...,q — 1. Foranyg > 3 this is automatically satisfied for at least some
values ofN.

For anyq/p, Xo = 1 — p/q, for which 1071 = 1(modq), the above guarantees the
existence of a precision for which the metastable single populagé@maintained upon
iteration. The first fevg values for which this is true [6] are 17, 19, 23, 29, 47, 59, 61, 67.
For exampleq = 19 andp = 5 correspond to aA value firmly within the chaotic regime
yet with a metastable single population of/19 for at least some precisions dglfis prime
andk in 10¢ = 1(modq) is not equal tay — 1, then the family of fractions defined loy/q
will be broken into(q — 1)/k sets withk elements each [6]. For examplegif= 11 then
k = 2 and there are then 5 sets each containing 2 of the possible 10 fractions. This grou
does not guarantee that the prop®iN) is available to satisfy the condition

m(N)/q < 1/A— 1, (25)

sincem(N)/q would correspond to only that set of fractions that contains the starting poi
(q — p)/g. However, for all primes less than 100 it is always true that the condition can |
satisfied for some precision for amysuch that 3< q/p < 4 andp contains only factors
of 2 or 5.

Are other conditions that produce stability available? In general we can wyite
(g — p)/q. If g contains only factors of 2 or 5 theg is also a terminating fraction. Any
precision,N, for which N is greater than the decimal fraction length>g@fand A will
produce a metastable single population. A method for choosing valugard p, where
bothx, and A are terminating decimals, follows.

The desired values dk are between 3 and 4, which means tAas of the form 3xyz..
(M decimal digits). The initial valuexg, is a number between 0 and 1 of the form@w
(N decimal digits). Choosingo = 1/A makesx; = 1 — 1/A, which, for the quadratic
iterator, is a candidate for a metastable population; therefokdsla suitable choice for an
initial position. LetB = 1/ A and write them ag\ = A10M andB’ = B10V, from which
it follows that A'B’ = 104, whereZ = M + N. Without loss of generality we can take
A =2Z or A =5Z, which implies thatB’ = 5Z or 2Z, respectively. Therefore, from
an A’ the appropriate value & is determined by placing the decimal after the first digit of
A’ while the associated starting valuexofs found fromB’ by placing the decimal at the
front of the string of digits. So, foZ = 5, we have 2= 32 and 3 = 3125 withA = 3.2
andxp =1— B =1-0.3125= 0.6875 whenM =1, N = 4. Also, forM =3, N = 2,
andZ = 5we getA = 3.125 andxp = 1 — 0.32 = 0.68.

To find appropriate values fak (and hence andp) it is necessary that”2or 5% or both
have a leading digit of 3. The decimal length &fi8 given by[Z log(2)]. Calculating

A = 2%2/107'°9? _ frac(Z log(2)) (26)
returns an expression f& from 0 to 10. Requiring 3x A < 4 reduces this to

3 < 1079 < 4, (27)
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or
log(3) < frac(Z1og(2)) < log(4). (28)

Writing Z =10n+5(n=1,2,...) makes it evident that alZ ending in 5 up to and
including Z = 95 satisfy the above inequality. Fof he appropriate condition is

log(3) < frac(Z log(5)) < log(4), (29)

and writing Z = 10n 4+ 8 implies that anyZ ending in 8 up to and including = 118
satisfies the inequality.

3. CONCLUSION

While the effect of computer-induced error on modeling chaotic behavior of nonline
systems is well understood, this paper has presented cases in which the expected con
influence is not observed. This variation from the expected behavior can be understoo
arising from the precision the computer uses in its calculations and manifests itself in 1
contrasting ways: for certain terminating decimals the single solution may be seen as alv
metastable, given the proper arithmetic and precision, because no information is ever
or in the case of repeating decimals stability may be introduced where none should €
by canceling errors in the first order. A new study [7] shows that additional anomalc
stabilities exist because of cancellations in the second order. These effects are shown
direct consequences of the precision used in the calculation. Therefore, increased prec
in the calculations does not necessarily translate into less computer influence upon the re
obtained. There is no evidence that the results reported here translate to higher dimens
maps. Investigations of Arnold’s cat map [8],

Xn+1 = frac(xn + yn) (30)
Ynt1 = frac(xn + 2yn), (31)

produced errors similar to those discussed above but no cancellations were discove
Further, no general rules are known that will guide investigators in determining when
guard against the effects reported here. It seems clear, though, that investigators wou
wise to check their calculations with various precisions and look for inconsistent result:
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